nnsvs.util
General utility
Example files
Get the path to an included xml file. |
Initialization
Initialize network weights. |
|
Initialize random seed. |
Multi-stream helper
Get stream sizes for WORLD-based acoustic features |
Mask
Make mask tensor containing indices of padded part. |
|
Make mask tensor containing indices of non-padded part. |
Padding
Pad a 2d-tensor. |
Path
Load a list of utterances. |
Scalers
- class nnsvs.util.PyTorchStandardScaler(mean, scale)[source]
PyTorch module for standardization.
- Parameters:
mean (torch.Tensor) – mean
scale (torch.Tensor) – scale
- class nnsvs.util.StandardScaler(mean, var, scale)[source]
sklearn.preprocess.StandardScaler like class with only transform functionality
- Parameters:
mean (np.ndarray) – mean
var (np.ndarray) – variance
scale (np.ndarray) – scale
- class nnsvs.util.MinMaxScaler(min, scale, data_min=None, data_max=None, feature_range=(0, 1))[source]
sklearn.preprocess.MinMaxScaler like class with only transform functionality
- Parameters:
min (np.ndarray) – minimum
scale (np.ndarray) – scale
data_min (np.ndarray) – minimum of input data
data_max (np.ndarray) – maximum of input data
feature_range (tuple) – (min, max)
Misc
Dynamic import |