nnsvs.gen.predict_timing
- nnsvs.gen.predict_timing(device, labels, binary_dict, numeric_dict, timelag_model, timelag_config, timelag_in_scaler, timelag_out_scaler, duration_model, duration_config, duration_in_scaler, duration_out_scaler, log_f0_conditioning=True, allowed_range=None, allowed_range_rest=None, force_clip_input_features=True, frame_period=5)[source]
Predict timinigs from HTS labels
This is equivalent to
predict_timelag + predict_duration + postprocess_duration
.- Parameters:
device (torch.device) – device to run the model on
labels (nnmnkwii.io.hts.HTSLabelFile) – labels
binary_dict (dict) – binary feature dictionary
numeric_dict (dict) – numeric feature dictionary
timelag_model (nn.Module) – timelag model
timelag_config (dict) – timelag config
timelag_in_scaler (sklearn.preprocessing.MinMaxScaler) – timelag input scaler
timelag_out_scaler (sklearn.preprocessing.MinMaxScaler) – timelag output scaler
duration_model (nn.Module) – duration model
duration_config (dict) – duration config
duration_in_scaler (sklearn.preprocessing.MinMaxScaler) – duration input scaler
duration_out_scaler (sklearn.preprocessing.MinMaxScaler) – duration output scaler
log_f0_conditioning (bool) – whether to condition on log f0
allowed_range (list) – allowed range of time-lag
allowed_range_rest (list) – allowed range of time-lag for rest
force_clip_input_features (bool) – whether to clip input features
frame_period (int) – frame period in milliseconds
- Returns:
duration modified labels
- Return type:
nnmnkwii.io.hts.HTSLabelFile